Combining Approaches to Improve Bounds on Convex Quadratic MINLP Problems1
نویسنده
چکیده
Bounds on the optimal value of a convex 0-1 quadratic programming problem with linear constraints can be improved by a preprocessing step that adds to the quadratic objective function terms which are equal to 0 for all 0-1 feasible solutions yet increase its continuous minimum. The continuous and the CHR bounds are improved if one first uses Plateau’s QCR method (2005), or one of its predecessors, the eigenvalue method of Hammer and Rubin (1970) and the method of Billionnet and Elloumi (2007). We present some preliminary results for convex GQAP problems using the eigenvalue method of Hammer and Rubin.
منابع مشابه
Contents (Sommaire) Combining Approaches to Improve Bounds on Convex Quadratic MINLP Problems
Bounds on the optimal value of a convex 0-1 quadratic programming problem with linear constraints can be improved by a preprocessing step that adds to the quadratic objective function terms which are equal to 0 for all 0-1 feasible solutions yet increase its continuous minimum. The continuous and the CHR bounds are improved if one first uses Plateau’s QCR method (2005), or one of its predecesso...
متن کاملMINLP Strengthening for Separable Convex Quadratic Transportation-Cost UFL
In the context of a variation of the standard UFL (Uncapacitated Facility Location) problem, but with an objective function that is a separable convex quadratic function of the transportation costs, we present some techniques for improving relaxations of MINLP formulations. We use a disaggregation principal and a strategy of developing model-specific valid inequalities (some nonlinear), which e...
متن کاملImproved quadratic cuts for convex mixed-integer nonlinear programs
This paper presents scaled quadratic cuts based on scaling the second-order Taylor expansion terms for the decomposition methods Outer Approximation (OA) and Partial Surrogate Cuts (PSC) used for solving convex Mixed Integer Nonlinear Programing (MINLP). The scaled quadratic cut is proved to be a stricter and tighter underestimation for the convex nonlinear functions than the classical supporti...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملBranching and bounds tighteningtechniques for non-convex MINLP
Many industrial problems can be naturally formulated using Mixed Integer Nonlinear Programming (MINLP) models and can be solved by spatial Branch&Bound (sBB) techniques. We study the impact of two important parts of sBB methods: bounds tightening and branching strategies. We extend a branching technique originally developed for MILP, reliability branching, to the MINLP case. Motivated by the de...
متن کامل